Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

SUBSCRIPTION MANAGEMENT

发行征订

首页 >> 发行征订 >> 征订方式

源荷不确定性下虚拟电厂两阶段鲁棒电算协同调度

来源:电工电气发布时间:2025-06-27 09:27浏览次数:4

源荷不确定性下虚拟电厂两阶段鲁棒电算协同调度

陈学增
(新疆龙源新能源有限公司,新疆 乌鲁木齐 830008)
 
    摘 要:为了应对算力与电力协同发展背景下源荷不确定性对虚拟电厂(VPP)优化调度的挑战,以及 VPP 运营商与电动汽车(EV)用户的利益冲突问题,基于电算协同优化进行了 VPP 两阶段鲁棒调度的策略研究。建立考虑源荷不确定性的基数不确定集,刻画新能源出力、电力负荷及 EV 充放电的不确定性特征;构建结合主从博弈的鲁棒优化调度模型,通过引入 EV 用户效用函数分析用户充电偏好,并刻画 VPP 与 EV 用户之间的交互关系;采用 KKT 条件和强对偶定理将主从博弈模型转换为混合整数线性规划问题,并设计列和约束生成(C&CG)算法对模型进行求解;通过算例验证了所提方法在提高 VPP 运行效益、降低不确定性风险以及增强 EV 用户满意度方面的有效性,为绿色低碳能源与数字经济的融合发展提供了技术支撑。
    关键词: 虚拟电厂;电动汽车;源荷不确定性;鲁棒优化;主从博弈
    中图分类号:TM715 ;TM734     文献标识码:A     文章编号:1007-3175(2025)06-0061-11
 
Two-Stage Robust Computing-Power Collaborative Dispatch of
Virtual Power Plants Under Source-Load Uncertainty
 
CHEN Xue-zeng
(Xinjiang Longyuan New Energy Co., Ltd, Urumqi 830008, China)
 
    Abstract: To address the challenges of source-load uncertainty on virtual power plant (VPP) optimal dispatch under the background of collaborative development between computing power and power systems, as well as the conflict of interest between VPP operators and electric vehicle (EV) users, this paper conducts a study on a two-stage robust dispatch strategy for VPPs based on computing-power collaborative optimization. Firstly,the base uncertainty set considering the source-load uncertainty is established to characterize the uncertainties of new energy output, electric load and EV charging/discharging. Secondly, a robust optimal dispatch model combining the master-slave game is constructed to analyze the charging preference of EV users by introducing the EV user’s utility function and to characterize the interaction relationship between the VPP and the EV users.Thirdly, the master-slave game model is converted into a mixed-integer linear programming problem by using KKT condition and strong dyadic theorem, and the column and constraint generation (C & CG) algorithm is designed to solve the model. Finally, the effectiveness of the proposed method in improving the operational efficiency of VPP, reducing the risk of uncertainty, and enhancing the satisfaction of EV users is verified by the arithmetic example, which provides technical support for the integration of green and low-carbon energy and digital economy.
    Key words: virtual power plant; electric vehicle; source-load uncertainty; robust optimization; master-slave game
 
参考文献
[1] GAO Hongchao, JIN Tai, FENG Cheng, et al. Review of virtual power plant operations :Resource coordination and multidimensional interaction[J].Applied Energy,2024,357 :122284.
[2] 丁巧宜,王梓耀,潘振宁,等. 面向电量- 调频-容量市场的数据中心园区算力及电力资源规划[J]. 电力系统自动化,2024,48(1) :59-66.
[3] WANG Yong, DOU Wenlei, TONG Yongji, et al.Optimal configuration method of electric vehicle’s participating in load aggregator’s VPP low-carbon economy[J].Energy Reports,2023,9:1093-1100.
[4] 李欣,陈英彰,李涵文,等. 考虑碳交易的电-热综合能源系统两阶段鲁棒优化低碳经济调度[J]. 电力建设,2024,45(6) :58-69.
[5] RUAN G, QIU D, SIVARANJANI S, et al.Data-driven energy management of virtual power plants :A review[J].Advances in Applied Energy,2024 :100170.
[6] 田立亭,程林,郭剑波,等. 考虑虚拟电厂对分布式能源的管理和互动机制研究综述[J] . 电网技术,2020,44(6) :2097-2108.
[7] CHANG Weiguang, YANG Qiang.Low carbon oriented collaborative energy management framework for multi-microgrid aggregated virtual power plant considering electricity trading[J].Applied Energy,2023,351 :121906.
[8] 李嘉森,王进,杨蒙,等. 基于随机优化的虚拟电厂热电联合经济优化调度[J] . 太阳能学报,2023,44(9) :57-65.
[9] 易明月,童晓阳. 考虑风荷预测误差不确定性的动态经济调度[J]. 电网技术,2019,43(11) :4050-4056.
[10] KONG Xiangyu, XIAO Jie, LIU Dehong, et al.Robust stochastic optimal dispatching method of multi-energy virtual power plant considering multiple uncertainties[J].Applied Energy,2020,279 :115707.
[11] 周博,吕林,高红均,等. 多虚拟电厂日前鲁棒交易策略研究[J]. 电网技术,2018,42(8) : 2694-2703.
[12] SONG Chunning, JING Xiping.Bidding strategy for virtual power plants with the day-ahead and balancing markets using distributionally robust optimization approach[J].Energy Reports,2023,9:637-644.
[13] YANG Jun, SU Changqi.Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty[J].Energy,2021,223 :120043.
[14] RAYA-ARMENTA J M, BAZMOHAMMADI N, AVINACERVANTES J G, et al.Energy management system optimization in islanded microgrids:A n overview and future trends[J].Renewable and Sustainable Energy Reviews,2021,149 :111327.
[15] 黄景光,汪谭,林湘宁,等. 面向风电消纳的区域综合能源系统鲁棒优化调度[J] . 电测与仪表,2021,58(12) :110-117.
[16] 胡俊杰,赖信辉,郭伟,等. 考虑电动汽车灵活性与风电消纳的区域电网多时间尺度调度[J]. 电力系统自动化,2022,46(16) :52-60.
[17] 刘方,徐耀杰,杨秀,等. 考虑电能交互共享的虚拟电厂集群多时间尺度协调运行策略[J] . 电网技术,2022,46(2) :642-654.
[18] 陈先龙,王秀丽,陈洁,等. 考虑分布式可再生能源交易的风电商与电动汽车充电站协同优化调度[J]. 电网技术,2023,47(11) :4598-4606.
[19] 彭春华,姜治,孙惠娟,等. 路-电耦合配电网调度与充电策略协同鲁棒优化[J] . 电网技术, 2023,47(7) :2762-2773.
[20] 李晓舟,秦文萍,景祥,等. 计及不确定风险和多主体协同的虚拟电厂参与主辅市场联合优化策略[J]. 电网技术,2024,48(11) :4553-4567.
[21] 周亦洲,孙国强,黄文进,等. 计及电动汽车和需求响应的多类电力市场下虚拟电厂竞标模型[J]. 电网技术,2017,41(6) :1759-1766.
[22] XIE Haixiang, GAO Shan, ZHENG Junyi, et al.A three-stage robust dispatch model considering the multi-uncertainties of electric vehicles and a multi-energy microgrid[J].International Journal of Electrical Power & Energy Systems,2024,157 :109778.
[23] SHEIDAEI F, AHMARINEJAD A.Multi-stage stochastic framework for energy management of virtual power plants considering electric vehicles and demand response programs[J].International Journal of Electrical Power & Energy Systems,2020,120 :106047.
[24] 卢强,陈来军,梅生伟. 博弈论在电力系统中典型应用及若干展望[J] . 中国电机工程学报,2014,34(29) :5009-5017.
[25] 代业明, 高岩, 高红伟, 等. 智能住宅小区的需求响应主从博弈模型[J] . 电力系统自动化,2017,41(15) :88-94.
[26] 龚诚嘉锐,林顺富,边晓燕,等. 基于多主体主从博弈的负荷聚合商经济优化模型[J]. 电力系统保护与控制,2022,50(2) :30-40.
[27] 刘又榕,林顺富,沈运帷,等. 计及电动汽车参与多元需求响应的微电网多时间尺度优化调度模型[J]. 电力建设,2023,44(10) :51-62.
[28] 李晨朝,陈佳佳,王敬华. 基于主从博弈和 IGDT 的含电动汽车需求响应光伏园区储能优化配置[J]. 电力建设,2025,46(4) :126-136.
[29] 詹祥澎, 杨军, 王昕妍, 等. 考虑实时市场联动的电力零售商鲁棒定价策略[J] . 电网技术,2022,46(6) :2141-2150.