Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 往年索引

基于多模型仿真的变电站数据监控与性能评估研究

来源:电工电气发布时间:2025-04-27 12:27 浏览次数:2

基于多模型仿真的变电站数据监控与性能评估研究

蒋亚坤,林旭,黄博
(云南电网有限责任公司,云南 昆明 650011)
 
    摘 要:各模型组合运用为变电站数据监控提供了技术支持,在数据分析和故障预警方面具有重要应用价值。采用卡尔曼滤波、自回归积分滑动平均(ARIMA)模型、高斯混合模型(GMM)、移动平均模型和系统性能评估方法对变电站数据监控的多种场景进行了仿真测试与分析。研究结果表明:卡尔曼滤波在噪声较大的观测数据中具备良好的平滑效果和状态估计能力;ARIMA 模型能够准确捕捉时间序列的长期趋势和短期波动,适用于负荷预测;GMM 模型通过概率密度分析成功识别低概率的异常点,实现异常检测;移动平均模型在不同窗口大小下能够平滑数据并分析短期趋势。通过系统性能评估实验,验证了系统在实时监控中的处理能力,发现高吞吐量和低延迟是系统高效运行的关键指标。
    关键词: 变电站;数据监控;卡尔曼滤波;自回归积分滑动平均(ARIMA) 模型;高斯混合模型;移动平均模型;异常检测;系统性能评估
    中图分类号:TM63 ;TM743     文献标识码:A     文章编号:1007-3175(2025)04-0053-06
 
Research on Substation Data Monitoring and Performance
Evaluation Based on Multi-Model Simulation
 
JIANG Ya-kun, LIN Xu, HUANG Bo
(Yunnan Power Grid Co., Ltd, Kunming 650011, China)
 
    Abstract: The integrated utilization of multiple models offers technical support for substation data monitoring, demonstrating significant applied value in data analysis and fault warning systems. In this study, simulation tests and comprehensive analysis were conducted on multiple scenarios of substation data monitoring by employing Kalman filter, auto-regressive integrated moving average(ARIMA)model, Gaussian mixture model (GMM), moving average (MA) model, and systematic performance evaluation methodologies. The results show that Kalman filtering has good smoothing effect and state estimation ability in noisy observation data; ARIMA model can accurately capture long-term trend and short-term fluctuation of time series, which is suitable for load forecasting; the GMM successfully identifies low-probability anomalies through probability density analysis and achieves anomaly detection; the moving average model is capable of smoothing the data under different window sizes and analyzing short-term trends. Ultimately, system performance evaluation experiments were conducted to verify the processing capabilities in real-time monitoring scenarios, with experimental results demonstrating that high throughput and low latency are critical indicators for efficient system operation.
    Key words: substation; data monitoring; Kalman filter; auto-regressive integrated moving average model; Gaussian mixture model; moving average model; anomaly detection; system performance evaluation
 
参考文献
[1] MOGHBELI M, REZVANI M M, MEHRAEEN S, et al.Dynamic transmission and distribution analysis for asymmetrical networks in the presence of distribution-connected DER units[C]//2023 IEEE Texas Power and Energy Conference(TPEC),2023.
[2] FU Sheng, ZHANG Yabin, SONG Haiqiang.Development of the remote monitoring and warning system for operation condition of the main drainage pump in mine[C]//2011 IEEE International Conference
on Mechatronics and Automation,2011.
[3] TANG Chao, CHANG Zhengwei, LIANG Huihui, et al.Automatic identification method of HPLC platform topology based on characteristic data extraction[J].Electric Power Components and Systems,2023,51(12) :1197-1206.
[4] DAN M, ZHANG Y, GAO F.Extended Kalman filtering for enhancing a cyclic pattern-updating scheme of single-pixel dynamic fluorescence spatial frequency domain imaging publisher's note[J].Optics Letters,2024,49(4) :955.
[5] DOU Zhiwu, JI Mingxin, WANG Man, et al.Price prediction of pu'er tea based on ARIMA and BP models[J].Neural Computing & Applications,2022,34(5) :3495-3511.
[6] YUAN H, ZHANG X P.Multiscale fragile watermarking based on the Gaussian mixture model[J].IEEE Transactions on Image Processing,2006,15(10) :3189-3200.
[7] MOON U C, LEE K Y.A boiler-turbine system control using a fuzzy auto-regressive moving average(FARMA) model[J].IEEE Transactions Energy Conversion,2003,18(1) :142-148.
[8] MURPHY-CHUTORIAN E, TRIVEDI M M.Head Pose Estimation and Augmented Reality Tracking:An Integrated System and Evaluation for Monitoring Driver Awareness[J].IEEE Transactions on Intelligent Transportation Systems,2010,11(2) :300-311.