Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 最新索引

智能终端数据中心性能优化技术研究

来源:电工电气发布时间:2025-10-28 13:28 浏览次数:5

智能终端数据中心性能优化技术研究

陆寒熹,蒋长献,李雨晴
(南京林洋电力科技有限公司,江苏 南京 210019)
 
    摘 要:在大规模、高频数据采集场景中,如何高效管理和存储数据成为亟待解决的问题。围绕智能终端数据存储性能优化和数据安全性保障,从读写性能优化、数据安全性设计以及主动预防策略三个角度提出了优化方法。通过引入数据分仓、内存数据库与缓存技术,并基于写入放大因子进行分析,设计了一个测试系统评估优化措施对性能和存储寿命的影响。实验结果表明,优化后的数据存储系统显著提高了数据读写性能,尤其在高频访问和大规模数据场景下表现优异,数据读性能提升48.9%,写性能提升57.6% ;同时通过优化写入放大因子,eMMC 存储器写入数据量减少至原来的4.9%,有效延长了存储设备寿命,提升了数据安全性。
    关键词: 智能终端;存储性能;内存数据库;数据缓存;数据安全性;主动预防策略
    中图分类号:TM73     文献标识码:A     文章编号:1007-3175(2025)10-0071-06
 
Research on Performance Optimization Technology of
Intelligent Terminal Data Center
 
LU Han-xi, JIANG Chang-xian, LI Yu-qing
(Nanjing Linyang Electric Power Technology Co., Ltd, Nanjing 210019, China)
 
    Abstract: In large-scale, high-frequency data collection scenarios, how to efficiently manage and store data has become an urgent problem to be solved. Centering on the optimization of data storage performance and data security guarantee for intelligent terminals, optimization methods are proposed from three perspectives: read and write performance optimization, data security design, and proactive prevention strategies. By introducing data partitioning, in-memory database and cache technology, and analyzing based on write amplification factors, a test system was designed to evaluate the impact of optimization measures on performance and storage life. Experimental results show that the optimized data storage system significantly improves data read and write performance, especially in high-frequency access and large-scale data scenarios, with data read performance improved by 48.9% and synchronous write performance improved by 57.6%. At the same time, by optimizing the write amplification factor, the data volume written to the eMMC memory has been reduced to 4.9% of the original, effectively extending the lifespan of the storage device and enhancing data security.
    Key words: intelligent terminal; storage performance; in-memory database; data cache; data security; proactive prevention strategy
 
参考文献
[1] 钟加勇,熊小伏,何迎春,等. 面向台区智能终端的即插即用和拓扑识别方法[J] . 电力系统自动化,2021,45(10) :166-173.
[2] 陈伟铭,陈金玉,范元亮,等. 基于智能融合终端云边协同的智能台区实用化设计及应用[J] . 中国电力,2024,57(4) :190-199.
[3] 金荣江,陈企楚,沈昌国,等. 基于双数据库结合技术的用电信息采集终端[J] . 电力系统自动化,2010,34(9) :109-111.
[4] 葛磊蛟,王守相,瞿海妮. 智能配用电大数据存储架构设计[J]. 电力自动化设备,2016,36(6) :194-202.
[5] 李凌,张徐东,钱声攀,等. 数据中心能耗数据实时采集机制的研究与设计[J] . 电力信息与通信技术,2021,19(3) :26-33.
[6] 王丽珍,周丽华,陈红梅. 数据仓库与数据挖掘原理及应用[M]. 北京:科学出版社,2005.
[7] 袁智勇,肖泽坤,于力,等. 智能电网大数据研究综述[J]. 广东电力,2021,34(1) :1-12.
[8] 李国良,周煊赫,孙佶,等. 基于机器学习的数据库技术综述[J]. 计算机学报,2020,43(11) :2019-2049.
[9] 张鸿,徐攀,庄卫金,等. 电网调度控制系统分布式高速数据缓存集群关键技术[J] . 电力信息与通信技术,2021,19(11) :9-16.
[10] 杨青霖,吴桂勇,张广艳. 分布式存储系统中的数据高效缓存方法[J]. 大数据,2021,7(2) :147-157.
[11] 罗维根. 非易失铁电存储器的进展和若干问题[J]. 物理,1999,28(4) :216-221.
[12] 陈桂生,李志刚. 嵌入式 Flash 文件系统的设计与实现[J]. 计算机系统应用,2010,19(5) :36-40.
[13] 李远哲,贺海文,万丽,等. 嵌入式系统大容量 NAND Flash 存储器分区管理设计[J] . 计算机测量与控制,2019,27(2) :212-215.
[14] 徐远超.eMMC 可靠性分析与增强对策研究[J]. 计算机应用研究,2017,34(11) :3367-3372.
[15] 俞丁翠, 罗龙飞, 宋云鹏, 等. 面向高密度闪存的内存页大小探索[J] . 计算机工程与科学,2024,46(7) :1167-1174.