Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 最新索引

基于深度学习的变电站六氟化硫仪表智能识别方法

来源:电工电气发布时间:2025-10-28 13:28 浏览次数:5

基于深度学习的变电站六氟化硫仪表智能识别方法

陈如风1,吴翊颖1,林烨2,兰茜2,张皓骏2
(1 国网福建省电力有限公司福州供电公司,福建 福州 350004;
2 福州大学 电气工程与自动化学院,福建 福州 350108)
 
    摘 要:变电站的现场因受污渍、光照、拍摄角度等干扰因素影响,远程巡视系统拍摄图像中的仪表信息弱化,指针信息缺失,导致仪表的识别准确率较低。针对该问题,采用了 YOLOv5 的目标检测框架,设计了交叉融合的特征金字塔网络,增强了基于 YOLOv5 的目标检测网络对仪表位置信息的提取能力;针对仪表图像模糊、倾斜等导致指针割裂问题,采用 U-Net 语义分割网络来识别仪表图像中的指针,实现了干扰环境下的仪表指针生成。实验表明,提出的基于深度学习的六氟化硫(SF6)仪表智能识别算法在变电站复杂环境中表现出了较强的识别能力,指针识别准确率由原来的63%提升至96%。
    关键词: 变电站;远程巡视;深度学习;六氟化硫仪表;智能识别;交叉融合;特征金字塔网络
    中图分类号:TM63 ;TM764.1     文献标识码:B     文章编号:1007-3175(2025)10-0061-05
 
Intelligent Recognition Method for SF6 Instrument in
Substation Based on Deep Learning
 
CHEN Ru-feng1, WU Yi-ying1, LIN Ye2, LAN Xi2, ZHANG Hao-jun2
(1 Fuzhou Power Supply Company, State Grid Fujian Electric Power Co., Ltd, Fuzhou 350004, China;
2 College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China)
 
    Abstract: Due to the influence of interference factors such as stains, light, and shooting angles at the substation site, the instrument information in the images captured by the remote inspection system is weakened, and the pointer information is missing, resulting in a relatively low recognition accuracy of the instruments. Aiming at this problem, the target detection framework of YOLOv5 was adopted, and a cross-fusion feature pyramid network was designed, which enhanced the ability of the target detection network based on YOLOv5 to extract the position information of instruments. To address the problem of pointer fragmentation caused by blurred and tilted instrument images, the U-Net semantic segmentation network is adopted to identify the pointers in the instrument images, achieving the generation of instrument pointers in the interference environment. Experiments show that the proposed intelligent recognition algorithm for sulfur hexafluoride (SF6) instrument based on deep learning has demonstrated strong recognition capabilities in the complex environment of substations, with the accuracy rate of pointer recognition increasing from the original 63% to 96%.
    Key words: substation; remote inspection; deep learning; SF6 instrument; intelligent recognition; cross-fusion; feature pyramid network
 
参考文献
[1] 丁思奎,李健. 变电站巡检机器人应用中存在的问题分析及解决方案[J]. 电工电气,2016(2) :57-58.
[2] 余福. 基于深度学习的变电站指针仪表读数识别方法研究[D]. 吉林:东北电力大学,2022.
[3] 付世雄. 基于图像处理的指针式仪表示数识别[D]. 哈尔滨:哈尔滨工业大学,2022.
[4] 钱玉宝,王紫涵,邱腾煌. 指针式仪表读数识别的研究现状与发展[J] . 电子测量技术,2024,47(8) :110-119.
[5] 荆永菊,薄树奎,郝晓玉,等. 基于图像处理的指针式仪表读数识别[J] . 信息技术与信息化,2024(12) :27-31.
[6] LIN Ye, XU Zhezhuang, WU Yiying, et al.A multitask network for occluded meter reading with synthetic data generation technology[J].Advanced Engineering Informatics,2025,64 :51-64.
[7] ZHOU Chuanhua, ZHOU Jiayi, YU Cai, et al.Multichannel sliced deep RCNN with residual network for text classification[J].Chinese Journal of Electronics,2020,29(5) :880-886.
[8] 南晓虎,丁雷. 深度学习的典型目标检测算法综述[J].计算机应用研究,2020,37(S2) :15-21.
[9] LIN Ye, XU Zhezhuang, YUAN Meng, et al.Pointer generation and main scale detection for occluded meter reading based on generative adversarial network[J].Measurement, 2024,234,114836-114850.