Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 栏目索引

基于并行分子微分进化算法的虚拟电厂多目标优化调度

来源:电工电气发布时间:2025-10-29 09:29 浏览次数:2

基于并行分子微分进化算法的虚拟电厂多目标优化调度

姜磊1,庞亚亚2,姜雨宏3
(1 国网山东省电力公司超高压公司,山东 济南 250118;
2 国网山东省电力公司临沂供电公司,山东 临沂 276000;
3 山东理工职业学院 能源与材料工程学院,山东 济宁 272067)
 
    摘 要:针对大规模风电、光伏等清洁能源出力随机性与热电联产机组“以热定电”运行约束带来的调度挑战,构建了集成高比例可再生能源、热电联产系统、电热储能及需求响应机制的虚拟电厂热电联合经济调度模型。提出基于分子动力学“近相斥”原理改进的多目标并行分子微分进化算法,构建全异步并行架构、精英个体动态迁移的双层并行计算策略,有效克服了传统群智能算法存在的早熟收敛与计算效率不足问题。仿真结果显示:与传统的微分进化算法相比,能够实现92.3%的全局收敛成功率,计算时间大幅缩短;所构建的调度模型在将风电、光电全部消纳的同时满足合同供热需求,实现煤耗量降低及净收益提升,充分验证了模型与算法的实用价值。
    关键词: 虚拟电厂;分子微分进化算法;风光发电模拟;热电联合调度;电热储能;双层并行计算
    中图分类号:TM715 ;TM731     文献标识码:A     文章编号:1007-3175(2025)10-0024-07
 
Multi-Objective Optimization Scheduling of Virtual Power Plants Based on
Parallel Molecular Differential Evolution Algorithm
 
JIANG Lei1, PANG Ya-ya2, JIANG Yu-hong3
(1 Ultra-High Voltage Company of State Grid Shandong Electric Power Company, Jinan 250118, China;
2 Linyi Power Supply Company of State Grid Shandong Electric Power Company, Linyi 276000, China;
3 School of Energy and Materials Engineering, Shandong Polytechnic College, Jining 272067, China)
 
    Abstract: In response to the dispatching challenges brought about by the randomness of the output of large-scale clean energy such as wind power and photovoltaic power and the operation constraints of cogeneration units based on heat to determine power generation, a virtual power plant combined heat and power economic dispatching model integrating a high proportion of renewable energy, cogeneration systems, electric-thermal energy storage and demand response mechanisms has been constructed. An improved multi-objective parallel molecular differential evolution algorithm based on the“proximity repulsion”principle of molecular dynamics is proposed, a double-layer parallel computing strategy with a fully asynchronous parallel architecture and dynamic migration of elite individuals is constructed, effectively overcoming the problems of premature convergence and insufficient computational efficiency existing in traditional swarm intelligence algorithms. The simulation results show that compared with the traditional differential evolution algorithm, it can achieve a global convergence success rate of 92.3%, and the computing time is significantly shortened. The constructed dispatching model not only fully consumes wind power and photovoltaic power but also meets the contracted heating demand,achieving a reduction in coal consumption and an increase in net income, which fully validates the practical value of the model and algorithm.
    Key words: virtual power plant (VPP); molecular differential evolution algorithm; wind/photovoltaic power generation simulation; combined thermo-electric dispatch; electric-thermal energy storage; dual-layer parallel computing
 
参考文献
[1] 彭春华,谢鹏,陈臣. 大规模光伏电站接入电网可调节鲁棒优化调度[J] . 中国电机工程学报,2014,34(25) :4324-4332.
[2] 黄昕颖, 黎建, 杨莉, 等. 基于投资组合的虚拟电厂多电源容量配置[J] . 电力系统自动化,2015,39(19) :75-81.
[3] 周博,吕林,高红均,等. 考虑热电联合调度的虚拟电厂交易策略研究[J] . 电测与仪表,2019,56(10) :75-81.
[4] 范松丽,艾芊,贺兴. 基于机会约束规划的虚拟电厂调度风险分析[J] . 中国电机工程学报,2015,35(16) :4025-4034.
[5] WANG D, PARKINSON S, MIAO W, et al.Hierarchical market integration of responsive loads as spinning reserve[J].Applied Energy,2013,104 :229-238.
[6] 彭春华,张金克,陈露,等. 计及差异化需求响应的微电网源荷储协调优化调度[J] . 电力自动化设备,2020,40(3) :1-7.
[7] 刘世成,张建华,刘宗岐. 并行自适应粒子群算法在电力系统无功优化中的应用[J] . 电网技术,2012,36(1) :108-112.
[8] 王毅,于明,李永刚. 基于改进微分进化算法的风电直流微网能量管理[J] . 电网技术,2015,39(9) :2392-2397.
[9] 孙惠娟, 蒙锦辉, 彭春华. 风-光-水-碳捕集多区域虚拟电厂协调优化调度[J] . 电网技术,2019,43(11) :4040-4049.
[10] ZHOU Bin, LIU Xi, CAO Yijia, et al.Optimal scheduling of virtual power plant with battery degradation cost[J].IET Generation, Transmission & Distribution,2016,10(3) :712-725.
[11] 李旭东,艾欣,胡俊杰,等. 计及碳交易机制的核-火-虚拟电厂三阶段联合调峰策略研究[J]. 电网技术,2019,43(7) :2460-2468.
[12] 彭春华,孙惠娟. 基于非劣排序微分进化的多目标优化发电调度[J] . 中国电机工程学报,2009,29(34) :71-76.
[13] 苗新强,金先龙,丁峻宏. 大规模并行结构动力分析分层计算方法[J] . 计算力学学报,2014,31(6) :702-708.
[14] 舒航,李强,郑琴. 基于并行粒子群优化算法的变分资料同化[J] . 解放军理工大学学报(自然科学版),2014,15(6) :583-590.
[15] 陈大宇,张粒子,马历. 储能参与的 AGC 市场出清优化建模新方法[J] . 电力系统自动化,2014,38(13) :79-84.