(1 Nengxing Electricity Sales Co., Ltd. of Xingfa Group, Yichang 443700, China;
			
				2 State Grid Hubei Electric Power Co., Ltd. Yichang Power Supply Company, Yichang 443000, China)
			
				
					    Abstract: Distributed energy storage and demand response technologies are important means to promote the consumption of new energy, and they have the advantages of peak regulation, balance, and flexibility. The carbon trading market and the penalty mechanism for the abandonment of new energy are introduced. Taking the energy storage cost, the operation cost of the distribution network, the network loss cost, the carbon trading cost, and the cost of new energy abandonment as the objective functions, an optimized allocation model for distributed energy storage is established. Considering the scheduling problems of each unit in the system, an operation strategy for the linkage between distributed energy storage and demand response is proposed, employing an improved bat algorithm to solve the problem. The case study shows that under the combined action of energy storage and demand response, the annual total cost of the distribution network is effectively reduced, the utilization rate of new energy is increased, the voltage quality and network loss of the power grid are improved, and the reliability and stability of the distribution network are ensured.
				
					    Key words: distribution network; distributed energy storage system; demand response technology; improved bat algorithm; optimal allocation;carbon trading mechanism
				
					 
				
					
						参考文献
					
						[1] 王新宝,葛景,韩连山,等. 构网型储能支撑新型电力系统建设的思考与实践[J] . 电力系统保护与控制,2023,51(5) :172-179.
					
						[2] 闫群民,董新洲,穆佳豪,等. 基于改进多目标粒子群算法的有源配电网储能优化配置[J]. 电力系统保护与控制,2022,50(10) :11-19.
					
						[3] 党少佳,赵松,霍红岩,等. 电池储能参与火电机组一次调频设计与应用[J] . 内蒙古电力技术,2023,41(3) :36-42.
					
						[4] 罗金满,刘丽媛,刘飘,等. 考虑源网荷储协调的主动配电网优化调度方法研究[J] . 电力系统保护与控制,2022,50(1) :167-173.
					
						[5] 申建建,王月,程春田,等. 水风光多能互补发电调度问题研究现状及展望[J] . 中国电机工程学报,2022,42(11) :3871-3884.
					
						[6] 张博,申建建,程春田,等. 基于 C 藤 Copula 理论的水风互补系统调峰方法[J] . 中国电机工程学报,2022,42(15) :5523-5534.
					
						[7] 李政,李伟起,张忠伟,等.“双碳”目标下我国电力系统灵活性资源发展策略研究[J] . 中国工程科学,2024,26(4) :108-120.
					
						[8] 姜懋,曹桂发,宋鹏至. 基于多时间尺度能量平衡算法的“源网荷储一体化项目”优化配置方法[J]. 科技促进发展,2024,20(5) :439-457.
					
						[9] 李红霞,李建林,米阳. 新能源侧储能优化配置技术研究进展[J]. 储能科学与技术,2022,11(10) :3257-3267.
					
						[10] 李沉融,吴梓宁. 考虑多重不确定性的概率暂态稳定约束最优潮流[J] . 水利水电技术(中英文),2025,56(3) :98-109.
					
						[11] 李鹏,姜磊,王加浩,等. 基于深度强化学习的新能源配电网双时间尺度无功电压优化[J]. 中国电机工程学报,2023,43(16) :6255-6265.
					
						[12] 蔡福霖,胡泽春,曹敏健,等. 提升新能源消纳能力的集中式与分布式电池储能协同规划[J]. 电力系统自动化,2022,46(20) :23-32.
					
						[13] YANG X S.A new metaheuristic bat-inspired algorithm[C]//Nature Inspired Cooperative Strategies Optimization Heidelberg: Springer Berlin Heidelberg,2010 :65-74.
					
						[14] 韩莹,于三川,李荦一,等. 计及阶梯式碳交易的风光氢储微电网低碳经济配置方法[J] . 高电压技术,2022,48(7) :2523-2533.